

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2707

Novel Fault Prediction Model in Component based Software System for

KC1 Dataset

Anjali Banga1, Pradeep Kumar Bhatia2

Submitted:10/03/2024 Revised: 25/04/2024 Accepted: 02/05/2024

Abstract: Present research work is focusing on fault prediction in component-based software system. In order to achieve this objective

dataset of KC1 has been considered. This research work outlines a method for establishing reusable software component evaluation

criteria. Optimization mechanism named hybrid PSO-MVO mechanism has been applied on component dataset that impact selection.

The major objective is to provide smart and optimized solution for component selection. Dataset that is filtered after detecting of

optimized value is trained using deep learning model. The accuracy parameters such as recall value, precision, F1 -score would be

considered to evaluate the accuracy of optimized component selection model. Such research is supposed to play significant role in area of

CBSE by providing high performance and accurate solution. Optimized value has been calculated for Line count of code, Cyclomatic

Complexity, Design Complexity, Estimate Time, Difficulty, Intelligence, Efforts. Considering optimized value, the dataset has been

filtered to build LSTM based model to detect the faults. Selection of significant attributes and elimination of non-optimized dataset has

increased reliability of model.

Keywords: PSO-MVO, Deep Learning, LSTM, Fault Prediction, Feature Selection.

1. Introduction

Software engineering may be considered as a method to

produce numerous software projects with many categories.

For this reason, applications of computer engineering are

applied, although it is becoming a tough job to anticipate

the software system dependability. Component-based

software engineering is method that is competent to solve

the problem of dependability. Component-based software

engineering is a comprehensive technique that facilitates

the construction of numerous components based recent

software investigations. It is not simple for a newbie to

produce new software but Component-Based Software

Engineering (CBSE) helps him to reduce his efforts in

development of new software. In CBSE, numerous

elements like reusability, reliance of component, and

interaction between components are significant. These

characteristics aid in designing new software and reducing

the system complexity. There is several soft computing

methods that has been applied for forecasting

dependability of system. Selection of Component in

Software is substantial stage in component dependent

software engineering patterns that is essential to retrieve

the components for adaption and to construct them.

Previous investigations on component based selection

conducted little discussion about qualities of a component.

Revealing procedure of influencing elements that are

impacting industry practitioners at the time of component

selection is continuing. Optimized component dependent

development of software is designed to make selection

of component easier in reusable software. Fault is the real

error in the code that causes the program not to operate as

it is intended. A defect stays undiscovered throughout

testing and debugging procedure and is found after

installation at customer's operating system. Faults leads to

software breakdowns. Hence affects the software quality.

Software failures lead to substantial expenses and

sometimes in safety essential systems it costs even the

human life. After all software's were built by people who

makes blunders by accident or due to demands like dead

line. Predicting software defects improves the quality of

the product. Using software failure prediction information

helps one to concentrate on the bad modules in subsequent

versions and in future projects of the same sort. Software

For complex software, archiving reliability is a difficult

task. Fault proneness, dependability, and reusability are all

aspects of software quality assurance that must be taken

into consideration. The accuracy and complexity of a fault

prediction model are the two most important factors to take

into account. Building a defect prediction model with

better accuracy and less complexity may be the goal. An

important part of feature selection is the elimination of

unnecessary, duplicated, missing or incorrect data. As a

result of the complexity of modern software, the selection

of features is important to their ability to accurately

anticipate software failure. Features may be selected using

filters and wrappers. We use statistical and machine-

learning methodologies like parametric models and hybrid

1 Research scholar, Computer Science Eng. Dept., Guru Jambheshwar

University of Science and Technology, Hisar-125001, Haryana, India

ORCID ID: 0009-0005-7703-9143
2 Professor, Computer Science Eng, Dept, Guru Jambheshwar University

of Science and Technology, Hisar-125001, Haryana, India

* Corresponding Author Email: banga.anjali88@gmail.com

mailto:banga.anjali88@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2708

algorithms in order to predict the errors. It is possible to

educate a computer to better foresee the future by using a

supervised machine learning technique that takes input and

output into consideration. We used the promise repository's

KC1 metrics dataset to run the tests. It is essential to know

your accuracy, MAE, and RMSE in order to compare

various feature selection methods.

1.1. Component-based software systems

In the process of creating huge, intricate systems, CBS

systems emerge as the final result. Conventional software

development methodologies are no longer applicable in

favour of CBSSs. Such approaches are accused of low

productivity, large development costs, unpredictability in

software quality, and the high risk of migrating to new

machines, among other problems. In order to keep

development costs and time to market to minimum,

component-based software systems rely on high-quality

components. Maintenance, reliability, and overall quality

may all be improved using these components. Even if

composition techniques are used in a given system, the

CBSS class is exceedingly difficult to regulate. It's not

easy to maintain a system that changes its components and

structure on a regular basis. According to current research,

component-based software engineering may be explained

by two evolutionary processes (CBSE). The creation of

reusable components is the initial step in the development

process. At this phase, Component-based software systems

are developed and reused (CBSSs). All of the optional

extras that may be purchased individually are included into

these systems as well.

1.2. Convolutional Network Layer

To categories the data after a convolutional operation, a

non-linear activation function is applied to the outputs, and

then a full connection layer is used. The kernel function,

which is another name for filter, is at the core of all

convolutional procedures. To complete feature extraction,

the original matrix moves from top to bottom along with

left to right. In natural language processing, a kernel

function as large as the original matrix is used to maintain

the integrity of a word at the finest granularity possible.

Depending on whether the original matrix is emptied out,

you may utilize either zero padding or valid padding when

sliding a kernel function. In this scenario, we use proper

padding. A separate layer, the LSTM, analyses the data

that comes from our convolutional layer. Because LSTM

needs the input of a sequential relationship, the pooling

process breaks this link, thus we remove it. Instead of

applying an activation function on the muddled results like

in a traditional CNN, we skip that step entirely in our

implementation.

1.3. LSTM

At the heart of LSTM is a cell state mechanism that may

selectively allow information to flow through the door

mechanism and add or remove information from cells.

Forget, input, and output gates are all part of LSTM. Prior

to updating the cell state, input gate determines what

information should be removed from it through forget gate

along with what information should be inserted by input

gate. The cell's state may be modified when these two

points have been established. The ultimate output of the

network is determined by the output gate. A RNN with

capacity to develop long-term reliance is known as a

LSTM. Figure 1 depicts its internal workings.

Fig.1. LSTM: standard

Nodes' states are calculated using Equation (1)-. (6).

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1)

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

𝐶̃𝑡 = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3)

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶̃𝑡 (4)

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5)

ℎ𝑡 = 𝑜𝑡 ∙ tanh(𝐶𝑡) (6)

ℎ𝑡−1 denotes the previous layer's hidden state, 𝑥𝑡 is current

input, W along with b is weights & biases, 𝜎 is sigmoid

function, 𝑓𝑡 is forget gate's output, 𝑖𝑖𝑡 is input gate's output,

𝐶̃𝑡 is intermediate temporary state, 𝐶𝑡−1 is previous layer's

cell state, 𝐶𝑡 is next layer's cell state, and 𝑜𝑡 is output gate's

output along with ℎ𝑡 is hidden state of next layer. LSTM

& one of its versions, named COIF-LSTM, are compared

in this paper's first section. Figure 2 depicts its internal

workings.

Fig. 2. LSTM: coupled of input and forget gates

Sole variation between them is that input gates are

calculated differently. To represent the updating manner of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2709

cell state in the following layer in Equation, output of input

gates is determined by 1-fft, rather than output of forget

gate along with the input gate being calculated

independently.

1.4. Deep Learning

Deep learning is an AI approach that replicates the way

people learn about certain types of information. Deep

learning is a key component of data science, which

includes statistical analysis and predictive modelling. A

subset of deep learning, artificial neural networks are

algorithms inspired by structure along with function of the

brain. If you are in this circumstance, machine learning

(ML) provides a solution that offers the benefits of quick

prediction and simpler parameter structures that match

early design stages. In a DSE process, this enables

designers and engineers to swiftly alter designs and

evaluate the repercussions for performance. To be useful in

new contexts, present ML techniques must be revised since

they were built expressly for design situations.

1.5. Fault Prediction

Predictive maintenance relies on failure prediction to keep

downtime and repair costs to a minimum. Mathematical

and statistical models are now the most often utilized

methods for predicting failure. System failures may be

avoided or mitigated by using methods such as predictive

failure analysis (PFA), which is used to describe a group of

techniques aimed at predicting when a system or

component (whether software or hardware) would fail and,

in some cases, providing ways to do so. Because software

dependability is becoming more and more essential in the

software business, failure prediction is a tough, intriguing,

and significant Endeavour. It is necessary to use a variety

of methods to find errors in the software's development. To

assess a program's reliability, failures must be accounted

for, and this is difficult to do until the product has been

fully created. Among all quality criteria, software

dependability is the most researched [1]. An important

prerequisite for understanding the software's global

behavior and ensuring its appropriate functioning in the

future is the prediction of defects for the estimation of its

dependability.

1.6. Software Fault Prediction

The average execution time or the numbers of defects that

occur in an execution time period are important

determinants of software dependability. Faults may emerge

at any point in the software design process, from the

requirements all the way through to the final product. As

the size and complexity of the program rises, so does the

amount of errors. The rate of software failure grows as

several defects in the program increases, & software's

dependability falls. In addition to design flaws,

implementation flaws are also regarded as design flaws. It

is unusual, if ever, that complicated software can be

developed without errors, and even when it does, it is

almost never possible to ensure that program is error-free.

Correctness of software may be proven using formal

techniques, which implies that it satisfies a specification

document. In contrast, today's formal verification

methodologies are not meant for huge software systems,

such as operating systems or word processors, to be tested

with. As a result, accuracy alone does not guarantee

dependability since the specification document itself may

be flawed. The reliability of software must be analysed in

order to meet high dependability criteria since it is

impossible to design sophisticated software systems devoid

of flaws. If the identical settings are used to run two copies

of the same (normal) programme, they will both fail. This

disproves the independence hypothesis. Furthermore, the

failure rates of software copies are entirely interdependent.

This means that many hardware fault tolerance ideas are

worthless for software. Software dependability may be

increased by leveraging design diversity rather than

redundant copies. The so-called N-version programming,

developed by Chen and Avizienis, is a typical method to

this problem. N-modular redundancy is more successful in

hardware reliability engineering than design diversity,

according to Knight and Leveson's study. The majority of

failures in complex systems are caused by software errors,

according to certain research. In reliable systems, software

flaws behave like transitory hardware flaws despite the fact

that they are design flaws. This is because their activation

conditions are stochastic.

1.7. Feature Selection

Reliability of software is often determined by the failure

rate in mean execution time or the number of errors that

occur in execution time gap in program. Most errors arise

in the course of creating software, from gathering

requirements through putting that program into production

form. As the size and complexity of the program rises, so

does the frequency of errors. When there are a greater

number of software defects, the likelihood of software

failure rises and the program's dependability drops. Faults

created during implementation are also regarded as design

flaws by the engineering community. Complex fault-free

software is seldom possible to design, and even when it

can, it is rarely guaranteed to be fault-free. The correctness

of software may be shown using formal techniques, which

indicates that it satisfies the requirements of a document.

However, today's formal verification methodologies are

not meant for huge software systems like operating

systems or word processors. Because the specification

document might be incorrect, accuracy does not guarantee

dependability. The reliability of software must be analyzed

in order to meet high dependability criteria since it is not

possible to design sophisticated software systems devoid of

defects. All copies of typical software will fail if they are

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2710

performed with the same settings. This disproves the

notion of independence. To be more specific, the failure

probabilities of software copies are fully reliant. In

software, this means that many hardware fault-tolerance

techniques are useless. Software dependability may be

increased by leveraging design diversity rather than

duplicate copies of the same program. The so-called N-

version programming, developed by Chen and Avizienis, is

a popular strategy for accomplishing this objective. As

Knight and Leveson's research has shown, N-modular

redundancy in hardware reliability engineering is likely to

be more successful than design variety for software.

Studies have indicated that the majority of failures in

complex systems are caused by software errors. In reliable

systems, software flaws behave like transitory hardware

flaws, despite the fact that they are design errors. Because

their activation circumstances are stochastic, this happens.

1.8. PSO-MVO Optimization

PSO is transformed into an evaluation tool. The shape it

takes is a procedure that is both easy to apply and put into

practice often. It was previously determined that this kind

of evaluation efficiently finds the optimal answer. One way

to describe this approach in the context of IT is as a

strategy for optimizing any given issue. It has been noted

that in a PSO-based model, each candidate solution's

performance is improved one by one. It addresses any

population-related problem with potential answers. The

particles that have been labeled move about in search-

space. The method relies on the mathematical rule that is

independent of the particle's location and velocity. A major

factor influencing its movement is its domestically famous

position. There have been improvements to this place in

the shape of higher positions. Other particles will have

little trouble locating these spots. It is anticipated that this

will guide the swarm to the most optimal options. PSO is

considered a good heuristic since it optimizes the issue

without making many assumptions. Nevertheless, there is

no assurance that an ideal solution will ever be discovered

when using Meta Heuristics like PSO. Given its track

record of effectiveness in solving a wide range of

optimization problems, it has emerged as one of the most

essential and practical met heuristics in use today. This

model can arrange itself. It revealed how dynamic these

intricate systems are. In a cooperative and intelligent

framework, it employs a very simplified model of social

behavior to handle optimization challenges.

MVO represents a novel innovation. It is an

environmentally friendly approach to maximize that works.

"This" was created by Mirjalili et al. When putting this into

action, they considered two specific considerations. Three

cosmological ideologies were used to develop this

approach. Not only does it gain notoriety in this manner,

but it also does so in a novel meta-heuristic optimization

technique. When it comes to issues connected to OPF, it

finds them quickly and easily. From a biological and

societal scientific perspective, it is a methodology that

receives ongoing inspiration. This approach incorporates

several cosmological ideologies into its operation. This

approach makes use of the wormhole notion in addition to

the white hole and black hole ideas. The method's ability to

quickly determine the intersection rate is one of its most

significant strengths. It does this by selecting a roulette

wheel. Furthermore, this technique can handle both

discrete and regular optimization problems.

Deriving hybrid PSO-MVO equation

The Hybrid PSO-MVO set combines PSO with MVO. By

combining the strengths of PSO and MVO, a hybrid

system may achieve optimal performance in a specific

application. The MVO Universe value is taking the place

of the PSO Pbest value.

v ij
t + 1 = wv ij

t + C1 R1 (Universes t − X t)

+ C 2R2 (Gbest t − X t)

2. Literature Review

LSTM recurrent neural networks were developed by

Liyuan Liu, et al. for influenza trend prediction. Acute

respiratory infection known as ILI has a significant death

and morbidity rate. Predicting influenza patterns and

responding quickly to a health crisis is essential to

reducing the number of deaths. LSTM RNNs are used in

this research to predict influenza trends. The only one to

integrate virologic surveillance, influenza geographic

dispersion, Google trends, climate along with air pollution,

and other unique data sources to predict influenza trends.

Several environmental and climatic factors were also

discovered to have a strong correlation with the incidence

of ILI [1].

Different security vulnerabilities were plaguing the

Internet and computer networks at the time of Mingyi

Zhu,et al. Deep learning solution based on AMF-LSTM for

net-work anomaly identification. AMF-LSTM, this model

for anomalous traffic detection, is presented in this

research. An attention mechanism is added to the original

LSTM in order to assist model understand which traffic

flow has a greater impact on its final output by using

statistical features of multi-flows rather than a single-flow

or features retrieved from log data. AMF-LSTM approach

provides a high level of accuracy and recall when it comes

to identifying anomaly types, according to experiments. [2]

For sentiment analysis in Arabic, Abdulaziz M. Alayba,et

al. coupled the CNN and LSTM models. The ability of

deep neural networks to represent complex and massive

datasets from a wide range of applications has been

demonstrated. CNNs have bene-fits in picking appropriate

features, but LSTM networks have proved to be excellent

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2711

at learning sequential data. Image processing, speech

recognition, language transla-tion, and other NLP

applications benefit from both techniques, according to

research. For emotion categorization of brief text messages

from Twitter, the complexity in-creases since Arabic is a

rich language in morphology. The lack of proper pre-

processing technologies for Arabic and study into the topic

are both limiting factors at the moment. For Arabic

sentiment analysis, we found that merging CNNs with

LSTMs resulted in a significant increase in accuracy.

Additionally, we'd want to take into account the particu's

morphological variety [3].

Sentic LSTM using a hybrid network was studied by

Yukun Ma and colleagues for aspect-based sentiment

analysis. In recent years, sentiment analysis has become

one of the most common NLP jobs. Emotional

classification of inputs is a common task in the workplace.

Sentence form presumes harmony along with coherence of

the emotion it expresses, however this isn't always true. As

a result of its more realistic assumption that sentiment is

dependent on particular traits and entities, sentiment

analysis has gotten a lot of attention from the community.

The use of deep neural networks for sentiment analysis has

made significant progress in the last several years. To gain

implicit information from data, (LSTMs), a functional

reproduction of human brain activity, are one of the most

successful deep neural models for sequential data. Even

while the training data may teach LSTM certain implicit

information, such as common sense facts, it is difficult for

them to gain explicit knowledge. Consequently, new

knowledge sources have evolved, and it has been agreed

that providing background information is an essential

addition to many NLP positions. Information-rich

sentiment analysis is suggested in this work with a specific

emphasis on leveraging commonsense information in the

deep neural sequence model for sentiment analysis, as

shown in this paper Stacked attention models for the target

and phrase levels are used to formally depict the inference

of the dependent sentiment in LSTM. As an extension of

long-term memory, Sentic LSTM directly incorporates

explicit information into implicit knowledge. Token-level

memory and concept-level inputs are interpolated by a

separate output gate in an enlarged LSTM cell an extension

of Sentic LSTM, which replicates sentic patterns, is an

LSTM-recurrent additive hybrid network. In particular,

we're looking for a task that combines the detection of

target-dependent features with the categorization of target-

dependent aspects. For this combined task, two benchmark

datasets are employed to measure performance. [4].

The attention-based two-phase lstm model developed by

Kuntal Dey and colleagues was used to identify topical

stances on Twitter. It is possible to determine the con-tent's

general attitude (positive, negative, or neutral) toward a

certain issue by analys-ing its topical position. The topical

stance detection issue aims to address this issue. Based on

the principle of attention, we came up with a two-phase

strategy. In first phase, we determine if a tweet is neutral or

subjective with respect to a certain issue. Secondly, they

classify tweets depending on whether they are in favour or

against the topic (excluding neutral tweets) in the second

phase. An attention-based neural net-work (LSTM) is

proposed for each stage of the process, and attention is

included in each phase. On SemEval 2016 stance detection

Twitter task dataset [7], we outper-form DL-based

methods in terms of best case macro F-score (68.84

percent) and best case accuracy (60.2%). A new topical

stance detection system called T-PAN [5] uses DL in a

two-phase approach to improve accuracy.

Tae-Young Kim,et al. was an essential aspect of the energy

supply company's opera-tions and planning. To ensure a

steady supply of power, it is necessary to have a back-up

plan in place. However, because power is difficult to store,

it is vital to forecast demand. A CNN-LSTM hybrid

network is proposed in this research to extract spatio-

temporal information to successfully estimate consumption

of household electricity. Using experiments, it has been

demonstrated CNN-LSTM hybrid networks, which linearly

mix CNN, LSTM, and DNN, can detect irregularities in

electric power consumption patterns. Time series may be

forecasted using DNNs and LSTMs in conjunction with

the CNNs and LSTMs in combination. The CNN-LSTM

hybrid technique is nearly perfect in predicting power use.

For the UCI repository's individual home power

consumption data sets, CNN-LSTM hybrid technique

yields a greater RMSE than standard prediction algorithms.

[6].

Jeff Heaton,et al. was considered Deep learning. Deep

Learning presents an in-depth look at the current status of

deep learning research, as well as a glimpse into the future

of the field. With the help of his doctoral adviser Yoshua

Bengio, Ian Goodfellow authored the paper. Aaron

Courville also contributed. All three are well-known

artificial intelligence experts (AI). Individual chapter PDFs

of the book are also accessible for free online.1 The book,

which is available in hardcover and Kindle versions, is

geared for academic researchers who already have a

working knowledge of calculus, linear algebra, probability,

along with basic programming skills. [7].

Micah J. Sheller, et al. have shown that deep learning

models require a lot of data to correctly segment images

meaningfully. In the medical imaging field, obtaining

enough data is a major difficulty. Expertise and training

are required for medical imaging data labelling. Data

sharing in the medical field raises several challenges for

international organisations dealing with privacy,

technology and data ownership. This is especially true in

the United States. As a result of our work, we are the first

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2712

to use federated learning in multi-institutional cooperation

to allow for deep learning model-ling without disclosing

patient data. Quantitatively, we found federated semantic

segmentation models perform on par with models trained

by sharing data on multi-modal brain scans. According to

our study, there are two other collaborative methods that

don't perform as well as federated learning. [8].

Interpretable/disentangled middle-layer representations

were the subject of this study by Quan-shi ZHANG and

colleagues. The interpretability of deep neural networks is

usually their Achilles' heel, despite the fact that they are

better in many tasks. Al-though deep neural networks can

currently make excellent distinctions, their black-box

representations are tough to comprehend. Learning from a

few annotations, human–computer cooperation at the

semantic level, and semantically debugging network

models are all examples of deep learning constraints that

can be solved with high model interpretability. There are

many ways for diagnosing and detangling pre-trained CNN

representations, as well as methods for executing middle-

to-end learning on the basis of model interpretability and

training CNNs with disentangled representa-tion. Last but

not least, let's take a look at what the future of AI looks

like from a layperson's perspective. [9].

Deepak Sharma,et al presented software quality,

maintainability, and reusability, machine-learning

techniques are employed to discover defects, faults,

ambiguities, and foul smells. To forecast software defects,

statistical approaches are employed to analyse data.

Machine-learning approaches, on the other hand, are useful

for spotting software errors. Using ML approaches, the

authors of this study provide an overview of software

failure prediction. Conventional methods are also covered

in this study. Fault-proneness is described in detail here.

[10].

Anum Kalsoom,et al. expressed the quality of a company's

software is critical to its success. It is important to note that

traditional software quality assurance methods have

significant time and money constraints. For this reason, the

use of ML to fore-cast software errors is increasing. In

early phases of program life cycle, software fault

prediction can assist developers in discovering software

issues. Identifying discrimin-ative software metrics and

generalizing these approaches to other program sizes, as

well as the problem of class imbalance, are the most

difficult difficulties to overcome. For the first time in this

research, performance of nine commonly used ML

classifiers — Bayes Net, NB, ANN, SVM, K closest

neighbours, AdaBoost, Bagging, Zero R, and Random

Forest in case of software defect prediction — has been

evaluated in this study. The problem of class imbalance is

addressed using SMOTE and Resample with replacement,

two basic sampling approaches. In order to pick the most

discriminative metrics, we employed a mix of the FLDA-

based feature selection technique, SMOTE, and Resample.

This research makes use of 15 openly accessible datasets

from PROMISE repository. In terms of accuracy, recall, f-

measure, along with area under curve, suggested

Resample-FLDA technique outperforms previous methods.

[11].

Chang Mook Kang,et al. considered kinematics-based

fault-tolerant techniques. As a workaround to the camera

vision sensor failing, they suggest using fault-tolerant ap-

proaches for a LKS. Prior to the driver assuming control,

lateral control system must maintain its stability without

vision sensor's output owing to failure or environmental

circumstances. Lateral kinematic vehicle motion model is

used to offer a fault-tolerant control approach. Kinematic

motion model-based lane estimate technique addresses the

possibility of camera vision sensor failure in face of

complicated shadowing, missing lane markers, and

illumination variations. The suggested lane estimating

approach allows the LKS to work even when sensors fail.

Computational simulation data from CarSim and

MATLAB/Simulink were used to verify the new approach.

AutoBox from dSPACE was also tested on a test car for

comparison [12].

3. Problem Statement

Research paper explains various Soft computing

mechanisms that have been utilized for Software

Component Selection. It has been observed that existing

Software Selection Modules have their own limitations.

ACO based Software Component Selection modules do not

support to Application Complexity whereas Neuro Fuzzy

based module is enable to provide reliability in Software

Component Selection. ACO based module can be used

only to compute the length of shortest path. But PSO with

MVO provides best solution in a small time. So, it has

become essential to propose an optimized software

selection module which can resolve the existing issues in

this field. Moreover it has been observed that MVO based

PSO is performing fast as compare to other optimization

techniques. Time taken and accuracy of solution, need to

be considered in order to perform comparative analysis of

these optimization techniques.

4. Proposed Work

Research is considering KC1 dataset that have 22 attribute

to build reliable LSTM based network model. Research has

used PSO-MVO mechanism to get the optimized solution

for significant fields. For Line count of code, Cyclomatic

Complexity, De-sign Complexity, Estimated Time,

Difficulty, Intelligence, Efforts, the optimal value has been

estimated. The dataset has been filtered to develop an

LSTM-based model to identify errors, taking into account

the optimal value. The model's dependability has been

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2713

improved by the selection of important features and the

deletion of non-optimized datasets.

4.1. Process Flow Proposed Model

Researchers use a training dataset for 70% of their work

and a testing dataset for 30%. The training step would

generate two LSTM models, one using the filtered dataset

and the other using the unfiltered dataset. A filtered model

is referred to as a suggested model, while an unfiltered

model is called a conventional model. In order to cut down

on time spent training and testing, the suggested work

takes into account an optimization strategy based on PSO

to remove the KC1 dataset. He planned to train the LSTM

model using the dataset that had been filtered. To simulate

a more precise answer, an LSTM with hidden layers would

be ideal. Hidden layers, batch size, and epoch size are

among of the accuracy-influencing elements that are now

under investigation. The quantity of the training and testing

datasets also affects the accuracy and time consumption.

Simply put, the research uses a hybrid approach that

integrates an optimization mechanism with LSTM to train

a sentiment analysis model quickly, taking the KC1 dataset

into account. Our study's overarching goal is to take into

account previous work in the areas of optimization

mechanisms, machine learning, and sentiment analysis.

Fig. 3. Proposed work

Issues and limitations with prior research approaches, such

as inaccuracy and time consumption, are being

investigated in the present study. It is intended to construct

a hybrid model that combines optimization mechanisms

with learning approaches to provide a system that is both

accurate and highly performing. Last but not least, the

suggested model compares and contrasts conventional fault

detection in software systems that rely on components with

the proposed method. In order to improve dependability,

optimization approaches based on PSO-MVO were used to

filter out the KC1 dataset before training and testing. He

planned to train the LSTM model using the dataset that had

been filtered. To simulate a more precise answer, an LSTM

with hidden layers would be ideal. Hidden layers, batch

size, and epoch size are among of the accuracy-influencing

elements that are now under investigation. The quantity of

the training and testing datasets also affects the accuracy

and time consumption.

Fetch data from Line count of code, Cyclomatic Complexity, Design Complexity,

Estimated Time, Difficulty, Intelligence, Efforts attributes

Apply PSO-MVO model in order to get optimized solution for each attribute

Get the filtered data sets for KC1 considering optimized value

Initialize hidden layers, epoch size, batch size for LSTM based training

Get unfiltered LSTM model for fault prediction and

detection

Get filtered LSTM model for fault prediction

and detection

Find confusion matrix and calculated accuracy, f1 score, recall value, precision

Make comparative analysis of accuracy parameters

Get the KC1 dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2714

Fig. 4. Working of LSTM model in proposed work

4.2. Dataset

In KC1 Dataset there are 22 attributes and 2109 records

where 326 are true for defect attribute and 1783 . These

attributes are loc, v(g), ev(g), iv(g), n, v, L, T, d, i, e, B,

lOCode, lOComment, lOBlank, locCodeAndComment,

uniq_Op, uniq_Opnd, total_Op, total_Opnd, branchCount,

defects. A module's loc specifies how many lines it

contains in total. This is total number of lines of code,

including executables, com-ments, & blanks. It is counting

from the first bracket to the last, regardless of the number

of characters in each line. Measures of "linearly

independent pathways" (v(g)) The term "linearly

independent" refers to the fact that in a program's "flow

graph," no route is linear combination of any other path in

set. In flowchart, each node represents program statement,

& each arc depicts direction in which control moves

between those statements. v(g) is computed using

v(g)-e-n+2 (7)

g is flow graph, "e" is number of arcs in flow graph, & "n"

is number of nodes in flow graph. McCabes rules

("v(g)">10) are often used to pinpoint a module's problem

po-tential. It is possible to decrease the essential

complexity of a flow graph by decom-posing all of 'g' into

"D-structured primes" (ev(g)). These "D-structured

primes" are referred to proper one-entry one-exit sub flow

graphs [1].

ev(G)-v(G)-m (8)

Where "m" is number of D-structured primes in "g" flow

graph. It is cyclomatic com-plexity of reduced flow graph

of a module that is measured by Design Complexity

(iv(g)). A module's flow graph, "g," is simplified to

remove any unnecessary com-plexity that has no bearing

on how different design modules interact with one another.

A module's call patterns to its immediate subordinate

modules indicate its complexity, according to McCabe. N

is total operands and operators for Halstead. V To code a

program, a minimum amount of bits (V) must be included

in a module to achieve this measure. A module's level (L)

statistic describes the understanding level (L) of the

program. A module's programming time is denoted by the

letter T. A time estimate for implementing the method is

given here. The greater distinct operators in program, more

complicated or error-prone it is. Intelligence (i) is a metric

that measures algorithm complexity irrespective of the

language in which it is expressed. When it comes to a

television show, the intelligence Content controls how

much is spoken. Effort (e) is defined as total time taken by

each module. Implementing the program requires mental

discriminations, as does understanding and learning the

program. The error estimate measure for a module is given

by the letter B. It's a rough estimate of how many mistakes

were made throughout the implementation process. All

code that isn't properly commented is included in IOCode.

In modules, the amount of lines devoted to comments is

known as the IOComment property. There is a count of

blank lines in IQBlank. The geographic location of a

module The number of lines that include both code and

comment is specified by the Code And Comment property.

The term "uniq Op" refers to the number of distinct

operators in a module that are either unique to that module

or that are not. A module's number of unique operands is

referred to as its uniq Opnd. The account module is what

you're looking for. Total number of variables and constants

the term "op" stands for "all operators." (Total of twenty)

Full Connected layer

Activation function

Classification

Sequence input layer

Word embedded layer LSTM Dropout LSTM Dropout

Dataset

Train 70% Test 30%

Start

KC1 dataset

Filtering using PSO-MVO

End

False Defects True

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2715

Opnd is a measure of how many operands have been used.

A module's branch Count tells you how many decision

points it has. For example, flaws describe whether or not a

given module is flawed, and this affects decisions.

Predictions are made using this property.

Table 1. List of KC1 Data Set

1 loc Line count of code

2 v(g) Complexity of Cyclomatic

3 ev(g) Complexity of Essential

4 iv(g) Complexity of Design

5 n Number of Operands

6 v Presenting Volume

7 L Length of Program

8 T Estimate Time

9 d Difficulty

10 i Intelligence

11 e Efforts

12 B Estimate Error

13 lOCode Count of Line

14 lOComment Line Count of Comment

15 lOBlank Count of Blank line

16 locCodeAndComment Code and Comment Line

17 uniq_Op Unique Operators

18 uniq_Opnd Unique Operands

19 total_Op Total number of Operators

20 total_Opnd Total number of Operands

21 branchCount Flow Graph

22 defects {True, False}

5. Result and Discussion

Simulation work has considered conventional and

proposed model for machine learning in case of KC1 data

set training along with testing. Confusion matrix has been

obtained in order to get accuracy parameters to evaluate

reliability of proposed model with respect to conventional

model. The study analyzed classification performance

using confusion matrices for both conventional and

proposed models. Accuracy, precision, recall, along with

F1 score were calculated for each class. Per-class

performance was evaluated using graphs and tables. Visual

representation was used to compare metrics between the

models. Accuracy, precision, recall, along with F1 score

were calculated using the formula

(TP+TN)/(TP+TN+FP+FN).

Accuracy =
TP+TN

TP+TN+FP+FN
 (9)

Precicion =
TP

FP
 (10)

Recall =
TP

TP+FN
 (11)

F1 Score = 2 ×
Precision ×Recall

Precision+Recall
 (12)

5.1. Simulation for Conventional research

Conventional research provided accuracy of 84.54% in

case of reduced feature selection method:

Table 2. Confusion matrix in case of reduced feature

selection method

 True False

True 152 36

False 41 271

TP: 423 and Overall Accuracy: 84.54%

Table 3. Accuracy parameters in case of reduced feature

selection method

Cla

ss

n

(trut

h)

n

(classifi

ed)

Accur

acy

Precisi

on

Rec

all

F1

Scor

e

1 193 188 84.6% 0.81 0.7

9

0.80

2 307 312 84.6% 0.87 0.8

8

0.88

Conventional approach has provided 85.63% prediction

value in case of Naive bayes model:

Table 4. Confusion matrix in case of Naive bayes model

 True False

True 155 36

False 35 286

TP: 423 and Overall Accuracy: 85.63%

Table 5. Accuracy parameters in case of reduced feature

selection method

Cla

ss

n

(trut

h)

n

(classifi

ed)

Accur

acy

Precisi

on

Rec

all

F1

Scor

e

1 190 191 85.63

%

0.81 0.8

2

0.81

2 304 303 85.63

%

0.88 0.8

8

0.88

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2716

5.2. Simulation for proposed work

Simulation work considers filtered and unfiltered dataset

for training and testing using LSTM based model. The

confusion matrix that has been obtained by unfiltered data

set of KC1 is as follow when 500 records have been passed

for testing:

Table 6. Confusion matrix in case of unfiltered LSTM

model

 True False

True 152 36

False 41 271

TP: 423 and Overall Accuracy: 87.2%

Table 7. Accuracy parameters in case of unfiltered LSTM

model

Cla

ss

n

(trut

h)

n

(classifi

ed)

Accur

acy

Precisi

on

Rec

all

F1

Scor

e

1 196 178 87.2% 0.87 0.7

9

0.83

2 304 322 87.2% 0.87 0.9

2

0.90

The confusion matrix that has been obtained by filtered

data set of KC1 is as follow when 500 records have been

passed for testing:

Table 8. Confusion matrix in case of filtered LSTM model

 True False

True 160 15

False 38 287

TP: 447 and Overall Accuracy: 89.4%

Table 9. Accuracy parameters in case of filtered LSTM

model

Cla

ss

n

(trut

h)

n

(classifi

ed)

Accur

acy

Precisi

on

Rec

all

F1

Scor

e

1 198 175 89.4% 0.91 0.8

1

0.86

2 302 325 89.4% 0.88 0.9

5

0.92

5.3. Bert based Implementation

Simulation work considers filtered and unfiltered dataset

for training and testing using Bert based model. The

confusion matrix that has been obtained by filtered data set

of KC1 using Bert is as follow when 500 records have

been passed for testing:

Table 10. Confusion matrix in case of Bert based

Implementation

 True False

True 176 11

False 22 291

TP: 467 and Overall Accuracy: 93.40%

Table 11. Accuracy parameters in case of Bert based

Implementation

Cla

ss

n

(trut

h)

n

(classifi

ed)

Accur

acy

Precisi

on

Rec

all

F1

Scor

e

1 198 187 94.12

%

0.94 0.8

8

0.91

2 302 313 92.97

%

0.92 0.9

6

0.94

5.4. RoBert based Implementation

Simulation work considers filtered and unfiltered dataset

for training and testing using Roberta based model. The

confusion matrix that has been obtained by filtered data set

of KC1 using Roberta is as follow when 500 records have

been passed for testing:

Table 12. Confusion matrix in case of RoBert based

Implementation

 True False

True 187 8

False 11 294

TP: 447 and Overall Accuracy: 89.4%

Table 13. Accuracy parameters in case of RoBert based

Implementation

Cla

ss

n

(trut

h)

n

(classifi

ed)

Accur

acy

Precisi

on

Rec

all

F1

Scor

e

1 198 195 95.9% 0.95 0.9

4

0.95

2 302 294 96.39

%

0.96 0.9

7

0.96

5.5. Comparative analysis

Research has made comparison of accuracy, precision, f1-

score and recall value in case of Conventional reduced

feature selection, Conventional approach using Naïve

Bayes, LSTM approach without optimization, LSTM

approach after optimization.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2717

Table 14. Comparative analysis of Accuracy

Clas

s

Conventional

feature selection

Conventional

using Naïve

Bayes

LSTM without

optimization

LSTM after

optimization

Bert after

optimization

RoBert after

optimization

1 84.60% 85.63% 87.20% 89.40% 94.12% 95.9%

2 84.60% 85.63% 87.20% 89.40% 92.97% 96.39%

Fig 5. Comparative analysis of Accuracy

Table 15. Comparative analysis of Precision

Class Conventional

feature

selection

Conventional

using Naïve

Bayes

LSTM without

optimization

LSTM after

optimization

Bert after

optimization

RoBert after

optimization

1 0.81 0.81 0.87 0.91 0.94 0.95

2 0.87 0.88 0.87 0.88 0.92 0.96

Fig 6. Comparative analysis of Precision

Table 16. Comparative analysis of Recall

Class Conventional

feature

selection

Conventional

using Naïve

Bayes

LSTM without

optimization

LSTM after

optimization

Bert after

optimization

RoBert after

optimization

1 0.79 0.82 0.79 0.81 0.88 0.94

2 0.88 0.88 0.92 0.95 0.96 0.97

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2718

Fig 7. Comparative analysis of Recall

Table 17. Comparative analysis of F1-score

Class Conventional

feature

selection

Conventional

using Naïve

Bayes

LSTM without

optimization

LSTM after

optimization

Bert after

optimization

RoBert after

optimization

1 0.80 0.81 0.83 0.86 0.91 0.95

2 0.88 0.88 0.90 0.92 0.94 0.96

Fig 8. Comparative analysis of F1-score

6. Conclusion

This paper presents lot of researches on Software

Component Selection in which different optimization

mechanism in existing Software Selection Modules are

suffering from many issues. Thus optimized Software

Selection System is supposed to resolve the issue of the

existing researches. Paper considered PSO-MVO as meta-

heuristic optimization technique that is used to predict

quality, reliability, applicability etc of software programs

at high speed. This research work is beneficial to develop

an efficient, fast and optimized Software Component

Selection module. Conventional research provided

accuracy of 84.54% in case of reduced feature selection

method whereas it provided 85.63% prediction value in

case of Naive bayes model. But proposed model has

provided accuracy of 87.2 % if KC1 dataset is processed

by LSTM model without attribute and record elimination

and accuracy of 89.4% when dataset is filtered by PSO-

MVO approach. The Bert-based and Roberta-based models

were used for training along with testing KC1 on filtered

and unfiltered datasets. Accuracy of 93.40% and 89.4%,

respectively, for classification of KC1 based on the

confusion matrix obtained from the filtered dataset. The

Roberta-based model achieved an accuracy of 95.9% and a

precision of 0.95%.

7. Future Scope

This research paper would be beneficial for coming

researchers to know the present status of Software

Selection in CBSE. It is a technical work in which PSO,

MVO are integrated to propose an optimized Component

Selection Module during LSTM based training. Therefore

it would be easy for future researchers to implement an

efficient and optimized Software Selection Module. This

paper is supposed to guide future research work in field of

CBSE. Moreover this work is supposed to play significant

role in getting present status of Software Selection in

CBSE.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2719

References

[1] L. Liu, M. Han, Y. Zhou, and Y. Wang, “LSTM

recurrent neural networks for influenza trends

prediction,” Lect. Notes Comput. Sci., vol. 10847

LNBI, pp. 259–264, 2018, doi: 10.1007/978-3-319-

94968-0_25.

[2] M. Zhu, K. Ye, Y. Wang, and C. Z. Xu, A deep

learning approach for network anomaly detection

based on AMF-LSTM, vol. 11276 LNCS. Springer

International Publishing, 2018.

[3] N. Ahuja, P. k. Bhatia, and L. Rani., A review on

nature inspired algorithm for test suite optimization,

In AIP Conference Proceedings, vol. 2782, no. 1. AIP

Publishing, 2023.

[4] A. M. Alayba, V. Palade, M. England, and R. Iqbal,

A combined CNN and LSTM model for Arabic

sentiment analysis, vol. 11015 LNCS. Springer

International Publishing, 2018.

[5] Y. Ma, H. Peng, T. Khan, E. Cambria, and A.

Hussain, “Sentic LSTM: a Hybrid Network for

Targeted Aspect-Based Sentiment Analysis,” Cognit.

Comput., vol. 10, no. 4, pp. 639–650, 2018, doi:

10.1007/s12559-018-9549-x.

[6] K. Dey, R. Shrivastava, and S. Kaushik, “Topical

stance detection for twitter: A two-phase LSTM

model using attention,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 10772 LNCS, pp. 529–

536, 2018, doi: 10.1007/978-3-319-76941-7_40.

[7] T. Y. Kim and S. B. Cho, Predicting the Household

Power Consumption Using CNN-LSTM Hybrid

Networks, vol. 11314 LNCS. Springer International

Publishing, 2018.

[8] J. Heaton, “Ian Goodfellow, Yoshua Bengio, and

Aaron Courville: Deep learning,” Genet. Program.

Evolvable Mach., vol. 19, no. 1–2, pp. 305–307,

2018, doi: 10.1007/s10710-017-9314-z.

[9] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and

S. Bakas, Multi-institutional deep learning modeling

without sharing patient data: A feasibility study on

brain tumor segmentation, vol. 11383 LNCS.

Springer International Publishing, 2019.

[10] Q. shi Zhang and S. chun Zhu, “Visual

interpretability for deep learning: a survey,” Front.

Inf. Technol. Electron. Eng., vol. 19, no. 1, pp. 27–

39, 2018, doi: 10.1631/FITEE.1700808.

[11] D. Sharma and P. Chandra, “Software fault prediction

using machine-learning techniques,” Smart Innov.

Syst. Technol., vol. 78, pp. 541–549, 2018, doi:

10.1007/978-981-10-5547-8_56.

[12] A. Kalsoom, M. Maqsood, M. A. Ghazanfar, F.

Aadil, and S. Rho, A dimensionality reduction-based

efficient software fault prediction using Fisher linear

discriminant analysis (FLDA), vol. 74, no. 9.

Springer US, 2018.

[13] C. M. Kang, S. H. Lee, S. C. Kee, and C. C. Chung,

“Kinematics-based Fault-tolerant Techniques: Lane

Prediction for an Autonomous Lane Keeping

System,” Int. J. Control. Autom. Syst., vol. 16, no. 3,

pp. 1293–1302, 2018, doi: 10.1007/s12555-017-

0449-8.

[14] R. Kaur and S. Sharma, An ANN based approach for

software fault prediction using object oriented

metrics, vol. 955. Springer Singapore, 2019.

[15] S. S. Rathore and S. Kumar, “Software fault

prediction based on the dynamic selection of learning

technique: findings from the eclipse project study,”

Appl. Intell., vol. 51, no. 12, pp. 8945–8960, 2021,

doi: 10.1007/s10489-021-02346-x.

[16] P. S. Saini, A. Bhatnagar, and L. Rani, "Loan

Approval Prediction using Machine Learning: A

Comparative Analysis of Classification Algorithms."

In 2023 3rd International Conference on Advance

Computing and Innovative Technologies in

Engineering, pp. 1821-1826. IEEE, 2023.

[17] W. Rhmann, B. Pandey, G. Ansari, and D. K. Pandey,

“Software fault prediction based on change metrics

using hybrid algorithms: An empirical study,” J. King

Saud Univ. - Comput. Inf. Sci., vol. 32, no. 4, pp.

419–424, 2020, doi: 10.1016/j.jksuci.2019.03.006.

[18] P. Chaudhari and H. Agarwal, Improving feature

selection using elite breeding QPSO on gene data set

for cancer classification, vol. 695. Springer

Singapore, 2018.

[19] A. Banga, P. K. Bhatia, “Software Component

Selection in CBSE considering cost, reliability and

delivery delay using PSO integrated MVO and ALO”

in Emerging Research in Computing, Information,

Communication and Applications, Lecture Notes in

Electrical Engineering, vol 790. pp 455–479.

Springer, Singapore, doi: 10.1007/978-981-16-1342-

5_36

[20] G. I. Sayed, G. Khoriba, and M. H. Haggag, “A novel

chaotic salp swarm algorithm for global optimization

and feature selection,” Appl. Intell., vol. 48, no. 10,

pp. 3462–3481, 2018, doi: 10.1007/s10489-018-

1158-6.

[21] H. P. B, D. C. Priambodo, and I. W. Mangku, for

Analyzing Seismic Activity, vol. 1, no. 474. Springer

International Publishing, 2018.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 2707–2720 | 2720

[22] H. P. B, D. C. Priambodo, and I. W. Mangku, for

Analyzing Seismic Activity, vol. 1, no. 474. Springer

International Publishing, 2018.

[23] D. Aksu, S. Üstebay, M. A. Aydin, and T. Atmaca,

“Intrusion detection with comparative analysis of

supervised learning techniques and fisher score

feature selection algorithm,” Commun. Comput. Inf.

Sci., vol. 935, pp. 141–149, 2018, doi: 10.1007/978-

3-030-00840-6_16.

[24] Q. Al-Tashi, H. Rais, and S. Jadid, Feature selection

method based on grey wolf optimization for coronary

artery disease classification, vol. 843. Springer

International Publishing, 2019.

[25] A. Banga, P. K. Bhatia, “Accuracy enhancement of

Component based selection model using Hybrid Soft

computing”, in Computational Intelligence and

Communication Technologies (CCICT)”, IEEE,

2024, doi: 10.1109/CCICT62777.2024.00035

[26] M. Hussain, J. J. Bird, and D. R. Faria, “A study on

CNN transfer learning for image classification,” Adv.

Intell. Syst. Comput., vol. 840, pp. 191–202, 2019,

doi: 10.1007/978-3-319-97982-3_16.

[27] M. Nguyen and N. A. V. B, SVMs with Deep

Learning and Random, vol. 2. Springer International

Publishing, 2019.

[28] T. Pham, C. Luong, and M. Visani, “Deep CNN and

Data Augmentation for Skin Lesion Classification,”

vol. 5, pp. 573–582, doi: 10.1007/978-3-319-75420-

8.

[29] A. Banga, P. K. Bhatia, “Optimized Component

based Selection using LSTM Model by Integrating

Hybrid MVO-PSO Soft Computing Technique,”

Adv. Sci. Technol. Eng. Syst. J., 6(4), 62-71

(2021) Vol. 6(4), pp. 62-71, 2021,

doi: 10.25046/aj060408

[30] G. Singh, P. K. Sarangi, L. Rani, K. Sharma, S.

Sinha, A. K. Sahoo, and B. P. Rath. "CNN-RNN

based Hybrid Machine Learning Model to Predict the

Currency Exchange Rate: USD to INR." In 2022 2nd

International Conference on Advance Computing and

Innovative Technologies in Engineering (ICACITE),

pp. 1668-1672. IEEE, 2022.

https://doi.org/10.1109/CCICT62777.2024.00035
http://dx.doi.org/10.25046/aj060408

